
Vector Reduction/Transformation Operators

ROSCOE A. BARTLETT

BART G. VAN BLOEMEN WAANDERS

MICHAEL A. HEROUX

Sandia National Laboratories, Albuquerque NM 87185 USA

Development of flexible linear algebra interfaces is an increasingly critical issue. Efficient and
expressive interfaces are well established for some linear algebra abstractions, but not for vectors.
Vectors differ from other abstractions in the diversity of necessary operations, sometimes requiring
dozens for a given algorithm (e.g. interior-point methods for optimization). We discuss a new
approach based on operator objects that are transported to the underlying data by the linear alge-
bra library implementation, allowing developers of abstract numerical algorithms to easily extend
the functionality regardless of computer architecture, application or data locality/organization.
Numerical experiments demonstrate efficient implementation.

Categories and Subject Descriptors: ... [...]: ...

General Terms: Algorithms, Design, Performance, Standardization

Additional Key Words and Phrases: Optimization, Object-Orientation, Vectors, Interfaces, ...

1. INTRODUCTION

Many mathematical algorithms are concerned with the construction and manipula-
tion of vectors and vector spaces. Typical situations include the construction of an
orthogonal basis of vectors, or computing search directions in a multi-dimensional
space. A common characteristic of these types of algorithms is that remarkably
little detailed information about the vectors is required in order to implement the
abstract numerical algorithm (ANA). We typically do not need to know if the vector
is stored on a serial computer or partitioned across a distributed memory computer.
In fact, the storage of the vector data, and even the actual mathematical computa-
tion involving the vectors can be done remotely from the computer that is executing
the ANA.

What an ANA does require is that vectors be compatible with each other, and
that certain operations such as vector norms, scalings and transformations can be
applied to the vectors. Furthermore, some classes of ANAs require a mechanism for
extending functionality, since the ANA has too many specialized vector operations
for a general-purpose vector library to implement a priori.

This ability to separate the vector functionality needed by an ANA from the

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Com-
pany, for the United States Department of Energy under Contract DE-AC04-94AL85000.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2003 ACM 0098-3500/2003/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003, Pages 1–25.

2 · Roscoe Bartlett et al.

details of the vector implementation is widely known, and its importance cannot
be overstated. Sophisticated ANA’s are a challenge to implement, independent
of implementation details of how vectors are stored or how vector operations are
performed. The real value of a good ANA is the careful attention to details such
as how parameters are selected to maintain orthogonality of a subspace or to avoid
stagnation or divergence. This observation has two major implications:

(1) The robustness of an ANA is essentially independent of the details of how
vectors are stored and computed.

(2) Sophisticated ANA’s need a vector interface that is abstract and easily ex-
tended.

Numerous abstract vector interfaces and concrete vector implementations have
been developed [Gockenbach and Symes ; Heroux et al. ; Balay et al. ; Pozo,
R. ; 1996; Lumsdanie and Siek 1998b]. At the same time, none of the existing
approaches have succeeded in maximizing the potential of the separation of interface
and implementation. In all existing approaches there are restrictions on the location
of data or the efficient extension of functionality, or both.

In this paper we present a simple and elegant mechanism that allows a maximum
separation of vector functionality from the details of implementation for a broad
class of vector reduction and transformation operations. This mechanism allows
data storage and computation to be completely separated from the ANA. It also
allows straightforward extension of vector functionality and can easily be incorpo-
rated into existing vector libraries. Complete source code along with Doxygen1

generated documentation for all of the examples described in this paper can be
found at WEBSITE2

2. BACKGROUND

We subdivide a typical numerical simulation code into three major components to
differentiate the ANA from other components that also require interfaces for linear
algebra operations (Figure 1). The first category is application (APP) software in
which the underlying data is defined for the problem. This could be something as
simple as the right hand side and matrix coefficients of a single linear system or as
complex as a finite element method for a 3-D nonlinear PDE-constrained optimiza-
tion problem. The second category is linear algebra library (LAL) software that
implements basic linear algebra operations [Demmel 1997; Anderson et al. 1995;
Blackford et al. 1997; Tuminaro et al. 1999; Balay et al. ; Heroux et al.]. These
types of software include primarily matrix-vector multiplication, the creation of a
preconditioner (e.g. ILU), and may even include several different types of linear
solvers. The third category is ANA software that drives the main solution process
and includes such algorithms as iterative methods for linear and nonlinear systems;
explicit and implicit methods for ODEs and DAEs; and nonlinear programming
(NLP) solvers [Nocedal and Wright 1999]. There are many example sofware pack-
ages [Balay et al. ; Tuminaro et al. 1999; Heroux et al. ; Byrne and Hindmarsh
1999; Benson et al.] that contain ANA software.

1www.doxygen.org
2WEBSITE = http://software.sandia.gov/RTOp

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

Vector Reduction/Transformation Operators · 3

APP In ter fac e

APP

Vec
Mat

ANA

Kr y lo v Solv er

Vec

Pr ec on d i t io n er

LAL 1 LAL 2

1..*

1 111

1..*

1

1..*1..*1

ANA/LAL interface
No t Par al l el A w are!

1

Interfaces within a
single LAL (e.g.
PETSc, Petra, Aztec,
ISIS++ etc.)
Par al l el Aw are!

ANA/APP interface
No t Par al l el A w are!

APP/LAL interface
(e.g. Finite Element
Interface, FEI)
Par al l el Aw are!

1

Specialization
 / inheri tance

� Computes functions

BaseClass

Der ived Clas s

Multiplicity

Interface
/ abstract class

Implementation
/ subclass

text

Clas s2

Clas s3

1..*
Association

Interface
(abbreviated)

Note

UML No tat io n

Vector
Interface

LAL/LAL interfaces (e.g. Equation Solver Interface, ESI)
Par al l el Aw are!

Fig. 1. UML class diagram : Interfaces between abstract numerical algorithm (ANA), linear

algebra library (LAL), and application (APP) software.

Multiple interfaces can be identified between ANA, LAL, and APP software com-
ponents. Although we are interested in the ANA-LAL connection, other interfaces
(e.g. APP-LAL [Clay et al. 1999], LAL-LAL [Sandia National Labs 2001]) are
required for the makeup of numerical codes, and have different functional require-
ments. The purpose of the APP-LAL interface is to allow APP software to fill
vector and matrix objects with residuals and gradients that define the underlying
mathematical problem. This interface needs to be fairly intimate and details such
as global data distribution maps (in a parallel application for example) must be
exposed by the interface. In some cases, more than one LAL may be used together
which requires a LAL-LAL interface. For example, the preconditioner from one
LAL may be used with the matrix and vector objects from another LAL in the so-
lution of a linear system using an iterative linear solver. The LAL-LAL interfaces
are similar to the APP-LAL interfaces in that they must also be fairly detailed and
expose information such as data distribution on a parallel computer. For instance,
for a parallel matrix to apply itself to a vector from another LAL, the vector must
expose its map of local to global elements and give explicit access to the local vector
data. An even more intimate interface must be exposed by a parallel matrix object
in order to construct a preconditioner from another LAL.

The focus of our work is the ANA-LAL interface because the realization of this
approach can potentially have considerable software development and code effi-
ciency impact. The purpose of the ANA-LAL interface is to provide numerical
algorithms with appropriate linear algebra functionality, preferably independent of
data mapping and without the involvement of the LAL developer. The central idea
is based on operator objects that are transported to the underlying data by the
linear algebra library implementation where they are applied on an element-wise

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

4 · Roscoe Bartlett et al.

basis. This approach provides developers of abstract numerical algorithms with the
ability to easily extend the functionality of a vector interface regardless of computer
architecture, application, data locality or organization of the underlying data. The
design of the ANA-LAL interface must consider the diversity of application areas,
computing environments, and configurations. For example, in a large-scale seismic
inversion problem, gigabytes of data are stored “out-of-core” and are repetitively
read from disk, operated on, and then written back to disk. Alternatively, the
main focus for large-scale scientific computing has been to write SPMD3 software
that runs on large parallel computers, and more recently, client-server and grid
computing are being considered where multiple resources may be used to solve a
single coupled problem. Issues associated with these different data mappings and
computing environments are addressed through our new approach.

Trying to abstract the details of linear algebra data structures and computations
away from ANAs is not a new or recent idea. The general specification of the
ANA-LAL and ANA-APP interfaces described in [Heinkenschloss and Vicente 1999]
allows the development of flexible ANA software. However, this specification does
not deal with the issues associated with the locality and mapping of vector data. In
addition, none of the current vector-interface approaches (see Section 3.2) provide
a sufficient means by which ANA and LAL software can be adequately decoupled
so that the work required to glue a particular ANA to a LAL is sufficiently low.
Here we describe a new approach by which a developer of an ANA can in fact
unilaterally add the implementation for a new vector operation and then have it
automatically supported by any LAL implementation for any runtime configuration.
This is possible through a specification for user-defined vector operators and the
addition of a single method to a vector interface that every LAL implementation
can easily support.

3. VECTORS IN NUMERICAL SOFTWARE AND CHALLENGES IN DEVELOPING
ABSTRACT INTERFACES

Vectors provide the primary foundation for the ANA-LAL and ANA-APP inter-
faces. Beyond transporting vector objects back and forth to the APP and LAL
interfaces, ANA also need to perform various vector reduction (e.g. norms, dot
products) and transformation (e.g. vector addition, scaling) operations. In addi-
tion, many specialized “nonstandard” vector operations must be performed. Ex-
amples of non-standard operations are presented below to help motivate our design,
followed by a discussion of how current and established approaches would attempt
to handle these non-standard operations.

3.1 Variety of vector operations needed

Perhaps the primary distinction between vectors and other linear algebra objects
is the large number of non-standard operations that a complex ANA requires. In
addition to the 15 BLAS [J. J. Dongarra and J. Du Croz and S. Hammarling and R.
J. Hanson 1988] operations, many other types of operations need to be performed.
For example, some of the nonstandard operations an optimization algorithm (e.g.
OOQP [Gertz and Wright 2001]) may perform are:

3Single Program, Multiple Data

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

Vector Reduction/Transformation Operators · 5

yi =





ymin − yi if yi < ymin

ymax − yi if yi > ymax

0 if ymin ≤ yi ≤ ymax
for i = 1...n, (1)

α ← {max α : x + αd ≥ β}, (2)

γ ← (x + αp)T (y + αq). (3)

The interior-point NLP algorithm described in [Dennis et al. 1998] performs
several more unusual vector operations, such as

di ←





(b− u)1/2
i if wi < 0 and bi < +∞

1 if wi < 0 and bi = +∞
(u− a)1/2

i if wi ≥ 0 and ai > −∞
1 if wi ≥ 0 and ai = −∞

for i = 1...n. (4)

3.2 Current approaches to developing interfaces for vectors and vector operations

Currently there are three established approaches to abstracting vectors from ANA
software that may be used to address special and unusual vector operations. Below
we describe each of these approaches and discuss their limitations.

The first approach (I) is to allow an ANA to access the vector data in some
controlled way which enables the ANA to perform required operations. This is by
far the most common approach and in the case of parallel numerical codes using
SPMD this is currently the preferred method [Heroux et al. ; Balay et al. ; Clay et al.
1999]. This approach however assumes that vector data is readily available in every
process where the ANA runs. Otherwise, moving large segments of vector data
to processes where the ANA is running can cause considerable inefficiencies. For
instance, in the case of a client-server architecture, copies of vector data would have
to be communicated from the client to the server causing considerable inefficiencies.
Approach I potentially provides for an efficient development environment, provided
data movement is not an issue and assuming the ANA algorithms do not need to
be re-used in other computing environments. Even in an SPMD environment, this
approach is not without difficulties (e.g. ghost elements and reduction operations).

More recently, a second approach (II) has been used where each specific ANA
defines its own customized abstract LAL interface and then leaves it up to the end
user to provide the implementations [Lumsdanie and Siek 1998a; Gertz and Wright
2001; Cai 1999]. ITL [Lumsdanie and Siek 1998a] uses the C++ template mech-
anism and requires compile-time polymorphism while OOQP [Gertz and Wright
2001] and DiffPack [Cai 1999] use C++ classes and virtual functions and allow
for runtime polymorphism. While this approach is more flexible than approach I
and abstracts away the data mapping issues, it simply passes the interfacing prob-
lem on to the end user, who is forced to implement the required operations given
an existing LAL. For example, OOQP includes more than 30 vector operations,

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

6 · Roscoe Bartlett et al.

many of which must be implemented from scratch for a new LAL or computing
configuration.

Finally, a third approach (III) constructs a general linear algebra interface that
tries to anticipate what fundamental or “primitive” operations will be needed. An
ANA is expected to implement more specialized operations by stringing together
a set of primitives. In theory, this approach allows ANA and LAL software to be
developed and maintained independently and be used together with very little extra
work. Such an approach was taken by the designers of the Hilbert Class Library
(HCL) version 1.0 [Gockenbach and Symes] and was originally motivated by out-
of-core data sets even though is applicable to any computing environment. Even
though approach III is most promising, it still has three primary shortcomings.
First, stringing together a set of primitive operations requires temporary copies
and can create an inefficient implementation. Second, this approach requires the
standardization of the primitive operations that are part of the interface. Conse-
quently, the developer of an ANA can not add a new method to an existing LAL
interface and expect it to be automatically supported by LAL implementations.
Third, non-standard operations are often difficult to develop through the use of a
finite number of primitives.

To demonstrate how a series of primitive vector operations can be used to im-
plement a more specialized operation, consider the vector reduction operation (2).
This operation could be performed with six temporary vectors u, v, w, y, z ∈ IRn

and the following six primitive vector operations:

−xi → ui, ui + β → vi, vi/di → wi, 0 → yi, max {wi, yi} → zi,

min {zi, i = 1...n} → α.
(5)

Many other vector operations can be performed using primitives. However, it is
difficult to see how operations like (1) and (4) could be implemented with general
purpose primitive vector operations. A large number of primitive operations need
to be included in a generic vector interface in order to implement most of the
required vector operations. For example, the vector interface in HCL 1.0 contains
more than 50 operations and still can not accommodate some of the above example
vector/array operations.

Another problem is that, in a parallel program, stringing primitives together
can result in a serial bottleneck. For instance, in ISIS++ [Clay et al. 1999], the
combined reduction operation (6) was implemented for the quasi-minimum-residual
(QMR) iterative solver.

{α, γ, ξ, ρ, ε} ← {(xT x)1/2, (vT v)1/2, (wT w)1/2, wT v, vT t} (6)

All five of the reduction operations in (6) can be performed in one pass through
the vector data (four vector reads) and one global reduction. In contrast, if we must
rely on primitive LAL methods for computing each reduction separately, we would
need at least seven vector reads and five global reductions. It is certainly possible to
add an operation like (6) to a LAL, but such an ANA-specialized operation can not
ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

Vector Reduction/Transformation Operators · 7

be added to a generic LAL interface without the direct support of the developers
of all the LALs used with the ANA.

4. VECTOR REDUCTION/TRANSFORMATION OPERATORS

4.1 Introduction to vector reduction/transformation operations

Our design addresses all the above described limitations associated with approaches
I, II, and III. The key design strategy consists of passing user-defined operations to
vector objects and having the vector implementations apply the operations to the
vector data. ANA developers are therefore not limited to the use of primitives, can
freely develop their vector operator implementations, and do not have to depend
on temporary copies. In addition to an efficient implementation, this approach is
also independent of the underlying data mapping of the vectors. The design allows
ANA developers to create any vector reduction/transformation operator (RTOp)
that is equivalent to the following element-wise operators:

element-wise transformation : opT (i, v0
i . . . vp−1

i , z0
i . . . zq−1

i) → z0
i . . . zq−1

i , (7)

element-wise reduction : opR(i, v0
i . . . vp−1

i , z0
i . . . zq−1

i) → β, (8)

reduction of intermediates : opRR(β̂, β̃) → β̃, (9)

where v0 . . . vp−1 ∈ IRn are p non-mutable input vectors; z0 . . . zq−1 ∈ IRn are
q mutable input/output vectors; and β is a reduction target object which may
be a simple scalar, a more complex non-scalar (e.g. {α, γ, ξ, ρ, ε}) or NULL. In the
most general case, the ANA can define an operator that will simultaneously perform
multiple reduction and transformation operations involving a set of vectors. Simpler
operations can be formed by setting p = 0, q = 0 or β = NULL. For example,
reduction operations over one vector argument, such as vector norms (||v||), are
defined with p = 1, q = 0 and β = {scalar}. With this design, all of the standard
BLAS operations, the example vector operations in (1)–(6) and many more vector
operators can be expressed. The key to optimal performance is that the vector
implementation applies (7) and (8) together on an entire set of sub-vectors (for
elements i = a . . . b) at once

op(a, b, v0
a:b . . . vp−1

a:b , z0
a:b . . . zq−1

a:b , β) → z0
a:b . . . zq−1

a:b , β. (10)

In this way, as long as the size of the sub-vectors is sufficiently large, the cost
of performing a function call to invoke the operator will be insignificant compared
to the cost of performing the computations within the operator. In a parallel
distributed vector, op(. . .) is applied to the local sub-vectors on each processor.
The only communication between processors is to reduce the intermediate reduction
objects op(β̂, β̃) → β̃ (unless β = NULL, then no communication is required). It
is important to understand that it is the vector implementation that decides how
to best segment the vector data into chunks that are passed to the user-defined
operator which results in the most efficient implementation possible.

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

8 · Roscoe Bartlett et al.

AbstractVector

apply_op(op:RTOp, ... , reduct_obj:Reduct ionTarget, ...)

RTOpReductionTarget

AssignScalarOp

set_alpha(alpha)
apply_op(...)

DotProductOp

apply_op(...)
reduce_reduct_objs(...)

ANA

MaxStepOp

apply_op(..., reduct_obj:ReductionTarget)
reduce_reduct_objs(...)

OutOfCoreVector

apply_op(...)apply_op(...)apply_op(...)

MPIVectorSerialVector
set_beta(beta)
apply_op(...)
reduce_reduct_objs(...)

...
...

Applys �

� Abstracts / encapsulates vectors Implements vector operations �

Fig. 2. UML class diagram : vector reduction/transformation operators

On most machines, the dominant cost of performing a vector operation is the
movement of data to and from main memory [Demmel 1997]. This is especially
true for out-of-core vectors. Therefore, performing multiple operations on a vector
at the same time such as in (6) will be faster than performing them separately in
most computing environments.

It is important to note that the type of element-wise operators described in (7)–
(9) can not be used to implement general linear and nonlinear vector operators.
For example, a general linear operator A

z = op(v) = Av

computes the ith element of the output vector z as a linear combination of perhaps
all of the right-hand-side vector elements in v. In a distributed-memory environ-
ment, this requires careful handling of vector data which results in the use of ghost
elements and the targeted communication of potentially large amounts of vector
data. For this reason, the element-wise operators defined in (7) explicitly state
this element-wise requirement. As is clearly seen in (7), the ith element in the
input/output vectors z can only be computed using information from the ith ele-
ments in the vectors v and z and from no other vector elements. It is impossible to
design an efficient operator interface that allows non-element-wise transformations
that does not also require a detailed knowledge of the computing environment, the
layout of vector data and functionality for communicating vector data.

4.2 An object-oriented design for reduction and transformation operators

Here an object-oriented [Booch et al. 1999; Gamma et al. 1995] design for vector re-
duction/transformation operators is presented which is based on the “Visitor” pat-
tern [Gamma et al. 1995]. Figure 2 shows the general structure of the design. At the
core of the design is an interface for vector operators called RTOp for which different
ANA-specific operator types can be implemented. This operator interface includes
methods for the operations (9) and (10). A vector interface AbstractVector in-
cludes a method that accepts user-defined RTOp operator objects (see WEBSITE for
the special behavior of this method). A vector implementation applies operators
in an appropriate manner and returns reduction objects (if non-NULL). Examples
of a few different concrete vector subclasses are shown in Figure 2. The reason
that this design pattern is called “Visitor” is that an “ObjectStructure” takes a
client’s user-defined visitor object and then decides how this visitor object will visit
ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

Vector Reduction/Transformation Operators · 9

all of the “Elements” containing the data. The key is that the client’s user-defined
operations are taken to the data in a transparent way, the data is not presented to
the client (as in the “Iterator” design pattern).

The mechanism by which a vector implementation applies a user-defined operator
depends on the computing environment. The following three scenarios show how an
ANA code can be used with the same operator implementations in three different
computing configurations: (i) out-of-core, (ii) SPMD, and (iii) client-server. The
ANA code does not need to be recompiled for any scenario and the LAL implemen-
tations can be changed at run time.

(i) For out-of-core data sets (Figure 3), the vector implementation reads the data
from disk one chunk at a time. The operator is called to transform the chunks
and/or compute a reduction object. The transformed chunks are then written back
to disk and the computed reduction object is returned. The vector implementation
applies the operator in the same manner regardless of the operator’s implementa-
tion.

(ii) For a SPMD environment (Figure 4), the ANA runs in parallel in each process.
Once the ANA in each process gives the operator object to the vector object, the
vector implementation in each process applies the user-defined operator to only the
local elements owned by the process. The intermediate reduction objects in each
process are then globally reduced (i.e. using a single call to MPI Allreduce(...))
and the final reduction object is returned. If the operator has a NULL reduction
object, then no global reduction is performed and no communication is required.

(iii) In the client-server environment, the ANA runs only in the client process
while the APP and LAL run in separate processes on the server. In this scenario,
the operator object must be transported from the client to the server, where it
is applied to the local vector data in each process. Then the reduction object is
returned to the ANA on the client. The client-server configuration demonstrates
the fundamental difference of this design from current approaches; the operator is
taken to the data, the data is not moved to the operator. The application of an
operator in a client-server configuration is involved and the reader is referred to
[Bartlett 2001] for additional details.

There are several advantages to the RTOp approach. Specifically:

(1) LAL developers need only implement one operation — apply op(...) — and
not a large collection of primitive vector operations.

(2) ANA developers can implement specialized vector operations without needing
any support from LAL maintainers. Note that common vector operators can be
shared by the numerical community and need not be implemented from scratch
by each set of developers of an ANA code.

(3) ANA developers can optimize time consuming vector operations on their own
for the platforms they work with.

(4) Reduction/transformation operators are more efficient than using primitive op-
erations and temporary vectors (see Section 6).

(5) ANA-appropriate vector interfaces that require built-in standard vector opera-
tions (i.e. axpy and norms) can use RTOp operators for the default implemen-
tations of these operations. In this way, some ANA developers may not ever
need to work with RTOp operators directly in order to apply standard vector

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

10 · Roscoe Bartlett et al.

a : ANA v : Out OfCor eVect orop : RTOp

«create»

targ_sub_vec :=
read_sub_vec(0)

.

.

.

write_sub_vector(
 targ_sub_vec)

Create and initialize the
transformation operator

Give the operator object to a
vector object to have the
operator applied

* Out-of-core vector
implementation reads first
sub-vector from file
* Operator object called to
perform reduct/trans operation
* Transformed sub-vector written
back to file

Rest of the sub-vectors are read
from file, transformed, and
written back to file
...

apply_op(...)
returns the reduction object (if
not null)

reduct_obj := apply_op(
 ...,targ_sub_vec,...
 ,reduct_obj)

apply_op(op,...reduct_obj)

 reduct_obj

Fig. 3. UML interaction diagram : Applying a RTOp operator for an out-of-core vector

(ith) MPI Process

d : MPIVec t o r

op : RTOp

↑ ai2.3: reduct_obj:=
 MPI_Allreduce(
 i_reduct_obj
 ,reduct_obj ,mpi_op)

...(jth) MPI Process

d : MPIVec t o r

op : RTOp

aj : ANA

↑ aj2.3: reduct_obj:=
 MPI_Allreduce(
 i_reduct_obj
 ,reduct_obj,mpi_op)

ai : ANA

↓ ai2.2: mpi_op := get_reduct_op()

↓ ai2.1: i_reduct_obj :=
 apply_op(...,local_sub_vec,...)

↓ aj2.2: mpi_op := get_reduct_op()

↓ aj2.1: i_reduct_obj :=
 apply_op(...,local_sub_vec,...)

↓ ai2: reduct_obj :=
 apply_reduction(
 op,...,reduct_obj)

↓ aj2: reduct_obj :=
 apply_reduction(
 op,...,reduct_obj)

↓ ai1: «create» ↓ aj1: «create»

Fig. 4. UML collaboration diagram : Applying a RTOp operator for a distributed parallel vector

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

Vector Reduction/Transformation Operators · 11

operations given a well written vector interface. In other words, the RTOp
approach need not inconvenience ANA developers in any way.

5. AN IMPLEMENTATION OF POLYMORPHIC REDUCTION AND TRANSFOR-
MATION OPERATOR OBJECTS IN C AND C++

The RTOp interface shown in Figure 2 can be implemented in a variety of differ-
ent programming languages. Here we describe our initial implementatations C and
C++. Because the design is based on object-oriented principles the obvious im-
plementation language is C++. However, the use of C provides efficient support
for the use of mixed languages and it makes the interface portable across many
computer architectures. Also, because C is perhaps the most popular development
language our approach may have a better chance of becoming a common specifica-
tion. The basic reduction and transformation operator interfaces are fairly simple
(i.e. single inheritance) and are therefore not difficult to implement in C. It must
be emphasized that the only part of this implementation that must be adopted
in order to realize the primary benefits of the new approach is contained in the
single, relatively small, header file RTOp.h. The rest of the code at WEBSITE is
strictly included for convenience and for demonstration purposes. The interfaces
have been designed to be interoperable where operators implemented in C can be
used through a C++ interface and visa-versa.

The most straightforward method to implement polymorphic objects and virtual
functions in C is to reproduce the internal mechanics of a C++ compiler. To illus-
trate this technique, consider the C struct for reduction/transformation operators
RTOp RTOp:

struct RTOp_RTOp {

void* obj_data;

RTOp_RTOp_vtbl_t* vtbl;

};

In the above struct, obj data is a void pointer to object instance specific data
and vtbl is a pointer to a virtual function table. The address stored in the pointer
RTOp RTOp::vtbl uniquely determines the concrete type of the operator. The form
of the data in RTOp RTOp::obj data must be compatible with the functions that are
pointed to in the virtual function table RTOp RTOp::vtbl. The struct for the virtual
function table stores the pointers to the functions that are called at runtime, and
creates the appropriate polymorphic behavior. For RTOp RTOp, the virtual function
table struct is defined as:

struct RTOp_RTOp_vtbl_t {

const struct RTOp_obj_type_vtbl_t *obj_data_vtbl;

const struct RTOp_obj_type_vtbl_t *reduct_vtbl;

const char *op_name;

int (*reduct_obj_reinit)(...);

int (*apply_op)(..., RTOp_ReductTarget reduct_obj);

int (*reduce_reduct_objs)(...);

int (*get_reduct_op)(...);

};

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

12 · Roscoe Bartlett et al.

In the above virtual function table, apply op is a pointer to a function that will
execute (10). Any reduction operation performed will be added to the reduct obj
argument. To simplify calling the apply op function, a client can use the following
function:

int RTOp_apply_op(const struct RTOp_RTOp* op

,const int num_vecs, const struct RTOp_SubVector sub_vecs[]

,const int num_targ_vecs, const struct RTOp_MutableSubVector targ_sub_vecs[]

,RTOp_ReductTarget reduct_obj)

{

return op->vtbl->apply_op(op->obj_data,num_vecs,sub_vecs

,num_targ_vecs,targ_sub_vecs,reduct_obj);

}

A vector implementation invokes a vector operation on a set of sub-vectors
sub vecs[] and targ sub vecs[] given a reduction/transformation operator ob-
ject op by calling:

RTOp_apply_op(op, num_vecs, sub_vecs, num_targ_vecs, targ_sub_vecs, reduct_obj);

In this way, the function RTOp apply op(op,...) acts polymorphically with
respect to an operator object op.

The struct RTOp RTOp vtbl t contains several other types of fields. The fields
obj data vtbl and reduct vtbl are actually pointers to two other virtual function
tables of type RTOp obj type vtbl t. The purpose of these virtual function tables
is to aggregate the methods needed to create, initialize, destroy, externalize and
internalize the state of the operator and reduction objects. This design allows the
same object structure to be used for both types of objects. The fields in the struct
for this virtual function table are:

struct RTOp_obj_type_vtbl_t {

int (*get_obj_type_num_entries)(..., int* num_values, int* num_indexes

,int* num_chars);

int (*obj_create)(..., void** obj);

int (*obj_reinit)(..., void* obj);

int (*obj_free)(..., void** obj);

int (*extract_state)(..., void* obj, int num_values, RTOp_value_type value_data[]

,int num_indexes, RTOp_index_type index_data[], int num_chars

,RTOp_char_type char_data[]);

int (*load_state)(..., int num_values, const RTOp_value_type value_data[]

,int num_indexes, const RTOp_index_type index_data[], int num_chars

,const RTOp_char_type char_data[],void ** obj);

};

The ability to externalize and load an object’s state as a set of arrays of simple
data types (i.e. value data[], index data[] and char data[]) is essential for
transporting and working with objects in a heterogeneous environment (i.e. client-
server and heterogeneous MPI). The methods extract state(...) and load-
state(...) are esential for the use of MPI to perform global reductions efficiently

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

Vector Reduction/Transformation Operators · 13

and to be able to transport RTOp operators over a network.
The remaining members in the struct RTOp RTOp vtbl t are simple function

pointers. The function pointed to by reduce reduct objs is used to perform
(9). Finally, the function pointed to by get reduct op returns a pointer to an-
other function that can be used by MPI as a user defined reduction operation with
MPI Reduce(...) and MPI Allreduce(...). This is the only place where RTOp
specifically must adhere to the MPI standard. But this function could be used
by any implementation to perform the needed intermediate reduction operations.
When an operator does not return a reduction target object (i.e. performs a trans-
formation only), some of the above function pointers can be NULL (see Appendix
A).

As mentioned earlier, there is also a compatible C++ interface called RTOpPack-
::RTOp. There are several advantages of the C++ interface: operator subclass de-
velopment is more straightforward, errors are handled with C++ exceptions (and
not with tedious error codes), and memory management is easier due to C++ con-
structors and destructors. An excerpt from its specification is given below which
shows similar syntax and functionality as the C specification:

namespace RTOpPack {

class RTOp {

public:

...

virtual void apply_op(... ,RTOp_ReductTarget reduct_obj) const = 0;

virtual void reduce_reduct_objs(...) const;

virtual void get_reduct_op(...) const;

...

};

}

A complete example program at WEBSITE includes an example vector interface,
and different vector implementations (including a MPI implementation for SPMD
programs). Also, several simple and unusual concrete reduction and transformation
operator classes have already been written (in C) and tested that are available for
general use which are described in the next section.

5.1 Examples of concrete RTOp operators

Source code (in C) for several simple and unusual concrete reduction and transfor-
mation operator classes is available for general use and to provide templates from
which other operators can easily be built.

Table I shows some of the reduction/transformation operators that are already
implemented. If a needed operator class uses an already implemented data type
for its object instance data and reduction target object, then such an operator
class is easy to implement. For example, consider the assignment-to-scalar trans-
formation operator z0

i ← α, for i = 1...n in Table I. The header file and source
files (stripped of comments) are simple enough and are given in Appendix A.
This simple transformation operator class contains all the features needed for
use in any computing environment. This subclass includes a constructor, de-
structor and other manipulation functions. The static implementation function
RTOp TOp assign scalar apply op(...) for this operator is trivial and only con-

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

14 · Roscoe Bartlett et al.

RTOp operators C Source files (*.c,*.h)

z0
i ← α, for i = 1...n RTOp TOp assign scalar.*

z0
i ← v0

i , for i = 1...n RTOp TOp assign vectors.*

z0
i ← αv0

i + z0
i , for i = 1...n RTOp TOp axpy.*

z0
i ← random(l, u), for i = 1...n RTOp TOp random vector.*

z0
i ← v0

i /v1
i , for i = 1...n RTOp TOp ele wise divide.*

z0
k ← α RTOp TOp set ele.*

z0
i ← −v1

i + µv0
i + αv0

i v1
i v2

i , for i = 1...n RTOp TOp mutiplier step.*

α ← v0
k RTOp ROp get ele.*

α ← (v0)T v1 RTOp ROp dot prod.*

γ ← max{α | v0 + αv1 ≥ β} RTOp ROp max step.*

α ←
∑n

i=1
v0

i RTOp ROp sum.*

α ←
∑n

i=1

{
log(v0

i − v1
i) + log(v2

i − v0
i)

}
RTOp ROp log bound barrier.*

Table I. Selected reduction/transformation operator classes implemented in C

tains one significant executable statement (the for loop). This operator class uses
a simple scalar object for its instance data (to hold α). This type is so common
for both object instance data and reduction target objects that the virtual func-
tion table for it has been implemented in a separate source file so that it can be
reused. The virtual function table RTOp obj value vtbl is declared in the header
file RTOp obj value vtbl.h and its functions are defined in the source file RTOp-
obj value vtbl.c. Since this operator class does not perform a reduction opera-
tion, it uses a predefined virtual function table RTOp obj null vtbl which simply
returns zero for the size of the object. With a NULL reduction target object, the
last two function pointers in the struct RTOp RTOp vtbl t are not needed and are
simply made NULL.

Several virtual function tables for common data types have been implemented.
However, the data types for some operators are unusual enough that these functions
are implemented within the source file for the operator class. For example, see
RTOp ROp get sub vector.c.

A considerable amount of boiler-plate code is required to create a new RTOp sub-
class. In order to ease the development process, a Perl script has been created that
can be used to automatically create complete RTOp subclass implementations (in
C) for many different types of specialized vector operations. Appendix B describes
the mechanics of the perl script in more detail and shows the results of applying
this script for two examples.

6. COMPUTATIONAL RESULTS

Conducting numerical experiments exclusively with low level linear algebra and
some communication from reduction operations is somewhat predictable. However,
we verify our design with two basic numerical experiments to validate an efficient
implementation, and show better performance than any primitive stringing process.

In the first example, a test program based on a mock QMR algorithm is used
to investigate the impact of using five primitive operations versus the all-at-once
operator in (6). A total of 128 processors on CPlant [Riesen et al. 1999] was used in
SPMD mode. The ratio of computation to communication was varied by manipu-
ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

Vector Reduction/Transformation Operators · 15

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

num_axpys

 (

 a
ll-

at
-o

n
ce

 c
p

u
)

ra
ti

o
 -

--
--

--
--

--
--

--
--

--
--

--
--

-

(

5
p

im
it

iv
es

 c
p

u
)

local dim

50,000

5,000

500
50

Fig. 5. Ratio of total process CPU times for using six primitive operations versus the all-at-once

operator for the operatation in (6) (number of processes = 128, number elements per process =

50, 500, 5000, 50000 and num axpys = 1 ... 400)

lating the number of local vector elements per process (local dim) and the number
of axpys per reduction (num axpys). When (local dim)(num axpys) is sufficiently
large, computation dominates and there is very little difference between the two im-
plementations. However, when (local dim)(num axpys) is smaller, the all-at-once
operator (with a single global reduction verses 5 global reductions) was noticeably
more efficient. Figure 5 shows the ratio in runtimes for the two approaches. These
results indicate that for nontrivial problem sizes the savings in runtime can be
significant.

In the second example, the impact of multiple access of the same vector data and
the creation of temporaries are investigated. The operation in (2) is used for the
comparison for which the implementation using primitives is shown in (5). Figure
6 shows the ratio of CPU times for the all-at-once RTOp operator implementa-
tion versus separate primitive vector implementations. The C++ code is written
using explicit loops and therefore removes any function call overhead that would
otherwise have a dramatic impact for small vectors. There are two variants of the
string of primitive vector operations implemented: one that uses preallocated tem-
porary vectors (cached temporaries) and one that uses newly allocated temporary
vectors for every evaluation (dynamic temporaries). Vector data is allocated us-
ing std::valarray<double> v(n) where n is the size of the vectors. Note that
std::valarray<> is not supposed to call constructors on the vector data upon
construction so in principle the construction of the vector object could be an O(1)
operation (this is not true for std::vector<>). This is strictly a serial program
so there is no communication overhead to consider. The vector operators are per-
formed several times in a loop and the ratios of runtimes are computed. The test
program was compiled using GCC 3.1 under Redhat Linux 7.2 and run on a 1.7
GHz Pentium IV processor. As shown in Figure 6, even without the impact of
multiple dynamic memory allocations, the implementation using the six primitive
vector operations only achieved about 35% of the speed of the all-at-once operator.

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

16 · Roscoe Bartlett et al.

0.00

0.20

0.40

0.60

0.80

1.00

1 10 100 1000 10000 100000 1000000

n (number of elements)

 r
el

at
iv

e
sp

ee
d

6 primatives (cached temporaries)

6 primatives (dynamic temporaries)

all-at-once

Fig. 6. Ratio of total process CPU times for using five primitive reductions versus the all-at-once

operator for the operation in (2) and (5). The times for the primative operation approaches with

cached temporary vectors and dynamically allocated temporary vectors are both given.

When naive dynamic allocations where used, the ratio of runtime dropped to about
20%. This example clearly shows the deterioration in runtime performance that the
vector primitives approach can have over the all-at-once RTOp approach.

7. CONCLUSIONS AND FUTURE WORK

Growing complexities associated with computational environments, application do-
mains, and data mapping place difficult demands on the development of numerical
algorithms. The vector operator interface proposed here addresses these issues and
allows the development of many types of complex abstract numerical algorithms
that are highly flexible and reusable.

Advanced object-oriented design patterns were used to develop the RTOp inter-
face and somewhat predictable numerical experiments demonstrate high efficiency
in comparison to using a combination of primitives. Also, simple scalability tests
confirm minimal serial overhead for large number of processors. Though the numer-
ical efficiencies are noteworthy, development efficiencies and functionality provide
the main advantages of this approach.

In summary, there are the five primary advantages to this approach:

(1) LAL developers need only implement one operation — apply op(...) — and
not a large collection of primitive vector operations.

(2) ANA developers can implement specialized vector operations without needing
any support from LAL maintainers.

(3) ANA developers can optimize time consuming vector operations on their own
for the platforms they work with.

(4) Reduction/transformation operators are more efficient than using primitive op-
erations and temporary vectors (see Section 6).

(5) ANA-appropriate vector interfaces that require built-in standard vector opera-
tions (i.e. axpy and norms) can use RTOp operators for the default implemen-
tations of these operations.

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

Vector Reduction/Transformation Operators · 17

A large set of vector operators are already available, but more significant is the
flexibility to extend functionality. In addition, the extensions are independent of
computer architecture and data mapping. By allowing the user to define reduc-
tion/transformation operators, all of the vector operations previously mentioned
and many more can be implemented efficiently without requiring any temporary
vectors.

The success of this approach relies on the adoption of a relatively small interface
for reduction/transformation operators that is contained in RTOp.h. Future work
will include the use of the RTOp approach in a client-server environment, which
will specifically address development issues and bottlenecks related to distributed
computing, heterogeneous networks and grid computing.

This design for vector reduction and transformation operators has been used to
design very powerful ANA-LAL and ANA-APP (for nonlinear programming) in-
terfaces in C++ called AbstractLinAlgPack and NLPInterfacePack respectively.
These interfaces in turn have been used to upgrade a successive quadratic program-
ming optimization package MOOCHO (a.k.a. rSQP++ [Bartlett 2001]) to allow
fully transparent parallel linear algebra and arbitrary implementations of linear
solvers (direct and iterative).

APPENDIX

A. IMPLEMENTATION OF “ASSIGNMENT TO SCALAR” RTOP TRANSFORMA-
TION OPERATOR.

// ///
// RTOp_TOp_assign_scalar.h

#ifndef RTOP_TOP_ASSIGN_SCALAR_H
#define RTOP_TOP_ASSIGN_SCALAR_H

#include "RTOpPack/include/RTOp.h"

#ifdef __cplusplus
extern "C" {
#endif

extern const struct RTOp_RTOp_vtbl_t
RTOp_TOp_assign_scalar_vtbl;

int RTOp_TOp_assign_scalar_construct(RTOp_value_type alpha,
struct RTOp_RTOp* op);

int RTOp_TOp_assign_scalar_destroy(struct RTOp_RTOp* op);
int RTOp_TOp_assign_scalar_set_alpha(RTOp_value_type alpha,

struct RTOp_RTOp* op);

#ifdef __cplusplus
}
#endif

#endif // RTOP_TOP_ASSIGN_SCALAR_H

// ///
// RTOp_TOp_assign_scalar.c

#include "RTOpStdOpsLib/include/RTOp_TOp_assign_scalar.h"
#include "RTOpPack/include/RTOp_obj_value_vtbl.h"
#include "RTOpPack/include/RTOp_obj_null_vtbl.h"

static int RTOp_TOp_assign_scalar_apply_op(
const struct RTOp_RTOp_vtbl_t* vtbl, const void* obj_data

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

18 · Roscoe Bartlett et al.

,const int num_vecs, const struct RTOp_SubVector vecs[]
,const int num_targ_vecs
,const struct RTOp_MutableSubVector targ_vecs[]
,RTOp_ReductTarget targ_obj)

{
RTOp_value_type alpha = *((RTOp_value_type*)obj_data);
RTOp_index_type z_sub_dim = targ_vecs[0].sub_dim;
RTOp_value_type *z_val = targ_vecs[0].values;
ptrdiff_t z_val_s = targ_vecs[0].values_stride;
RTOp_index_type k;
if(num_vecs != 0 || vecs != NULL)

return RTOp_ERR_INVALID_NUM_VECS;
if(num_targ_vecs != 1 || targ_vecs == NULL)

return RTOp_ERR_INVALID_NUM_TARG_VECS;
for(k = 0; k < z_sub_dim; ++k, z_val += z_val_s)

*z_val = alpha;
return 0;

}

const struct RTOp_RTOp_vtbl_t RTOp_TOp_assign_scalar_vtbl =
{

&RTOp_obj_value_vtbl
,&RTOp_obj_null_vtbl
,"TOp_assign_scalar"
,NULL
,RTOp_TOp_assign_scalar_apply_op
,NULL
,NULL

};

int RTOp_TOp_assign_scalar_construct(RTOp_value_type alpha
,struct RTOp_RTOp* op)

{
op->vtbl = &RTOp_TOp_assign_scalar_vtbl;
op->vtbl->obj_data_vtbl->obj_create(NULL,NULL

,&op->obj_data);
((RTOp_value_type)op->obj_data) = alpha;
return 0;

}

int RTOp_TOp_assign_scalar_destroy(struct RTOp_RTOp* op)
{

op->vtbl->obj_data_vtbl->obj_free(NULL,NULL,&op->obj_data);
op->vtbl = NULL;
return 0;

}

int RTOp_TOp_assign_scalar_set_alpha(RTOp_value_type alpha
,struct RTOp_RTOp* op)

{
((RTOp_value_type)op->obj_data) = alpha;
return 0; // success?

}

B. AUTOMATIC GENERATION OF RTOP SUBCLASSES IN C

To make the process of creating an RTOp C subclass easier and because there is
boiler-plate code that is needed, a Perl script called new rtop.pl has been imple-
mented. This script automates most of the work required to create a new RTOp
subclass. This script prompts the user for the answers to a set of questions about
the operation being performed. In many cases, the output header and source files
will be ready to compile and use. In other cases, the user will have to finish the
implementation.

Many different types of specialized operators, including all of the example oper-
ators in (1)–(4), can be completely implemented with the script. Below, we show
ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

Vector Reduction/Transformation Operators · 19

the use of this script in generating the source code for C RTOp subclasses for the
example specialized operators in (2) and (4).

B.1 Example transformation operator

The Perl script is first demonstrated on the transformation operator in (4). Note
that all of the data required to perform the operation is contained in the four
input vectors a, b, u and w. The only exception is the value of ∞ which may be
platform dependent. Therefore, we will allow the ANA to define the value of ∞
as an operator object instance data member called inf val. Before running the
script, the vector arguments are ordered and mapped into the generic names v0 = a,
v1 = b, v2 = u, v3 = w, z0 = d and then (4) is restated as:

z0
i ←





(vl − v2)1/2
i if v3

i < 0 and v1
i < +∞

1 if v3
i < 0 and v1

i = +∞
(v2 − v0)1/2

i if v3
i ≥ 0 and v0

i > −∞
1 if v3

i ≥ 0 and v0
i = −∞

. (11)

We will call this operator subclass TOp trice diag scal. The interactive session
with the script new rtop.pl is shown below:

*** Create a new C RTOp operator subclass ***

1) What is the name of your operator subclass?

: TOp_trice_diag_scal

2) Is your operator coordinate invariant?

[y] or [n] : y

3) Give the number of nonmutable input vectors (vi, i=0...num_vecs-1)?

: 4

4) Give the number of mutable input/output vectors (zi, i=0...num_targ_vecs)?

: 1

5) Does your operator require extra data which is not in the input vectors?

[y] or [n] : y

Choose the structure of the data:

1: {index}

2: {value}

3: {value,index}

4: {value,value}

5: other

Choose 1-5? 2

Give name for {value} member?

: inf_val

6) Does your operator perform a reduction?

[y] or [n] : n

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

20 · Roscoe Bartlett et al.

7.a) Does your element-wise operation(s) need temporary variables?

[y] or [n] : n

7.c) Give the C statement(s) for element-wise transformation operation?

You can choose:

Non-mutable operator data (don’t change here) : inf_val

Non-mutable vector elements (don’t change here) : v0, v1, v2, v3

Mutable vector elements (must modify here) : z0

? if(v3 < 0 && v1 < +inf_val)

? z0 = sqrt(v1-v2);

? else if(v3 < 0 && v1 >= +inf_val)

? z0 = 1;

? else if(v3 >= 0 && v0 > -inf_val)

? z0 = sqrt(v2-v0);

? else if(v3 >= 0 && v0 <= -inf_val)

? z0 = 1;

?

The implementation files RTOp_TOp_trice_diag_scal.h and

RTOp_TOp_trice_diag_scal.c should be complete!

After the script creates these files, they just need to be integrated into the build
system (i.e. added to the makefile) and compiled. The only part of the implemented
RTOp subclass that is more than just boiler-plate code is the loop that actually
performs the element-wise transformation. Below is a snippet of code from the
static function RTOp TOp trice diag scal apply op(...) for the loop that actu-
ally performs the user-defined element-wise transformation.

for(k = 0; k < sub_dim; ++k, v0_val += v0_val_s, v1_val += v1_val_s

,v2_val += v2_val_s, v3_val += v3_val_s, z0_val += z0_val_s)

{

// Element-wise transformation

if((*v3_val) < 0 && (*v1_val) < +(*inf_val))

(*z0_val) = sqrt((*v1_val)-(*v2_val));

else if((*v3_val) < 0 && (*v1_val) >= +(*inf_val))

(*z0_val) = 1;

else if((*v3_val) >= 0 && (*v0_val) > -(*inf_val))

(*z0_val) = sqrt((*v2_val)-(*v0_val));

else if((*v3_val) >= 0 && (*v0_val) <= -(*inf_val))

(*z0_val) = 1;

}

The above code loops over a chunk of vector elements using BLAS-compatible
strided iterators (of dimension sub dim which are provided by the vector imple-
mentation) and performs the transformation operation. The generated source code
can then be manually post-modified (and perhaps better optimized).

The developer of an ANA implemented in C++, for instance, can include the
header file RTOp TOp trice diag scal.h and then a RTOp object for this trans-
formation operator can be created, used and destroyed as:

#include "RTOp_TOp_trice_diag_scal.h"

...

void trice_diag_scale(const AbstractVector& a, const AbstractVector& b

,const AbstractVector& u, const AbstractVector& w, const AbstractVector& d)

{

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

Vector Reduction/Transformation Operators · 21

// Create and initialize the instance data for the operator

const RTOp_value_type inf_val = 1e+50;

const RTOp_RTOp trice_scal_op;

RTOp_TOp_trice_diag_scal_construct(inf_val,&trice_scal_op);

// Apply the operator to the existing vectors a, b, u, w and d

const AbstractVector* vecs[] = { &a, &b, &u, &w };

AbstractVector* targ_vecs[] = { &d };

apply_op(trice_scal_op, 4, vecs, 1, targ_vecs, RTOp_REDUCT_OBJ_NULL);

// Destroy the operator and clean up memory

RTOp_TOp_trice_diag_scal_destroy(&trice_scal_op);

}

The above constructor and destructor are declared in the generated header file
and are automatically implemented in the source file by the script. The above
code snippet uses the C++ vector interface AbstractVector that is included in
the example code. The apply op(...) function simply calls the apply op(...)
method on the first vecs[0] object. Note that the order of the vector arguments a,
b, u and w matches the order defined in (11). The ordering of the vector arguments
must match and this order is determined by the developer that created the RTOp
subclass.

B.2 Example reduction operator

The next example operator we consider is the reduction operation in (2). First we
rewrite the operation in generic standard form as:

α ← {max α : v0 + αv1 ≥ β}, (12)

This reduction operation is more complex than the previous example trans-
formation operation and requires a little more thought. If we can assume that
v0

i ≥ β, for i = 1 . . . n before going in, what the above reduction is really asking for
is the minimum αi where:

αi = max((β − v0
i)/v1

i , 0).

The reduction operation (12) can then be reexpressed as:

α ← min{max((β − v0
i)/v1

i , 0), for i = 1 . . . n}.

This reduction operation requires the scalar operator data β (beta) and produces
the scalar reduction object α (alpha). To make this operator work correctly, we
must initialize the reduction object alpha to a very large value. In this implemen-
tation we will assume that 1e+200 will be larger than any reasonable values of the
reduction. In general, whenever using min(...) for the reduction of intermediate
reduction objects, we generally want to initialize the reduction object to some large
value before performing the first reduction.

We will call this operator ROp max feas step and the following is the interactive
session with the new rtop.pl script used to create the implementation files.

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

22 · Roscoe Bartlett et al.

*** Create a new C RTOp operator subclass ***

1) What is the name of your operator subclass?

: ROp_max_feas_step

2) Is your operator coordinate invariant?

[y] or [n] : y

3) Give the number of nonmutable input vectors (vi, i=0...num_vecs-1)?

: 2

4) Give the number of mutable input/output vectors (zi, i=0...num_targ_vecs)?

: 0

5) Does your operator require extra data which is not in the input vectors?

[y] or [n] : y

Choose the structure of the data:

1: {index}

2: {value}

3: {value,index}

4: {value,value}

5: other

Choose 1-5? 2

Give name for {value} member?

: beta

6) Does your operator perform a reduction?

[y] or [n] : y

Choose the structure of the data:

1: {index}

2: {value}

3: {value,index}

4: {value,value}

5: other

Choose 1-5? 2

Give name for {value} member?

: alpha

6.a) Does the reduction object require nonzero initialization?

[y] or [n] : y

6.b) Give the initial values for the reduction object data:

alpha ? 1e+200

6.c) Choose the reduction of intermediate reduction objects:

1: sum{value,value}

2: min{value,value}

3: max{value,value}

4: other

Choose 1-4? 2

7.a) Does your element-wise operation(s) need temporary variables?

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

Vector Reduction/Transformation Operators · 23

[y] or [n] : n

7.b) Give the C statement(s) for element-wise reduction operation?

You can choose:

Non-mutable operator data (don’t change here) : beta

Non-mutable vector elements (don’t change here) : v0, v1

Element-wise reduction data (must be set here) : alpha_ith

? alpha_ith = (beta - v0) / v1;

? alpha_ith = max(alpha_ith, 0.0);

?

The implementation files RTOp_ROp_max_feas_step.h and

RTOp_ROp_max_feas_step.c should be complete!

The code snippet that loops through the elements and performs the reduction op-
eration is contained in the generated static function RTOp ROp max feas step apply op(...)
and is shown below.

for(k = 0; k < sub_dim; ++k, v0_val += v0_val_s, v1_val += v1_val_s)

{

// Element-wise reduction

alpha_ith = ((*beta) - (*v0_val)) / (*v1_val);

alpha_ith = max(alpha_ith, 0.0);

// Reduction of intermediates

(*alpha) = min((*alpha), alpha_ith);

}

Since this is a reduction operator, the ANA code must create the reduction target
object before it is passed into a vector object’s apply op(...) method. The follow
code snippet shows how a ANA code might use this reduction operator and extract
the value of the reduction.

#include "RTOp_ROp_max_feas_step.h"

...

RTOp_value_type max_feas_step(const AbstractVector& x, const AbstractVector& d

,const RTOp_value_type beta)

{

// Create and initialize the instance data for the operator

RTOp_RTOp max_feas_step_op;

RTOp_ROp_max_feas_step_construct(beta,&max_feas_step_op);

// Create the reduction object

RTOp_ReductTarget max_feas_step_reduct_obj;

RTOp_reduct_obj_create(&max_feas_step_op,&max_feas_step_reduct_obj);

// Apply the reduction operator to the existing vectors x and d

const AbstractVector vecs[] { &x, &d };

apply_op(max_feas_step_op, 2, vecs, 0, NULL, &max_feas_step_reduct_obj);

// Extract the value from the reduction object

RTOp_value_type alpha = RTOp_ROp_max_feas_step_val(max_feas_step_reduct_obj);

// Destroy the operator and clean up memory

RTOp_ROp_max_feas_step_destroy(&max_feas_step_op);

return alpha;

}

The above code snippet also uses the example C++ vector interface AbstractVector
mentioned above.

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

24 · Roscoe Bartlett et al.

That is really all there is to creating most new RTOp operators using the provided
script. More details on the use of the script new rtop.pl can be found in the help
file HowTo.CreateNewRTOpSubclass at WEBSITE.

REFERENCES

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A.,

Hammarling, S., McKenny, A., Ostrouchov, S., and Sorensen, D. 1995. LAPACK User’s

Guide. SIAM.

Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F. PETSc, portable extensible toolkit

for scientific computing (web site). http://www.mcs.anl.gov/petsc.

Bartlett, R. A. 2001. Object oriented approaches to large-scale nonlinear programming for

process systems engineering. Ph.D. thesis, Department of Chemical Engineering, Carnegie

Mellon University, Pittsburgh, PA.

Benson, S., McInnes, L. C., and Moré, J. TAO : Toolkit for advanced optimization (web page).

Blackford, L. S., Choi, J., Cleary, A., Azevedo, E. D., Demmel, J., Dhilon, I., Dongarra,

J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walder, D., , and Whaley, R.

1997. ScalLAPACK User’s Guide. SIAM, Philadelphia, PA.

Booch, G., Rumbaugh, J., and Jacobson, I. 1999. The Unified Modeling Language User Guide.

Addison-Wesley.

Byrne, G. D. and Hindmarsh, A. C. 1999. PVODE, an ODE solver for parallel computers. Int.

J. High Perf. Comput. Applic 13, 354–365.

Cai, X. 1999. Two object-oriented approaches to the parallelism of diffpack.

http://www.ifi.uio.no/~xingca/.

Clay, R., Allan, B., Mish, L., and Williams, A. 1999. ISIS++ reference guide (iterative scalable

implicit solver in c++) version 1.1. Tech. Rep. SAND99-8231, Sandia National Laboratories.

Clay, R. L., Mish, K. D., Otero, I. J., Taylor, L. M., and Williams, A. B. 1999. An

annotated reference guide to the finite-element interface (FEI) specification : Version 1.0. Tech.

Rep. SAND99-8229, Sandia National Laboratories.

Demmel, J. 1997. Applied Numerical Linear Algebra. SIAM.

Dennis, J. E., Heinkenschloss, M., and Vicente, L. N. 1998. Trust-region interior-point sqp

algorithms for a class of nonlinear programming problems. SIAM J. Control and Optimiza-

tion 36, 5, 1750–1794.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns: Elements fo

Reusable Object-Oriented Software. Addison-Wesley.

Gertz, M. and Wright, S. 2001. Object-oriented software for quadratic programming.

http://www.cs.wisc.edu/~swright/ooqp/.

Gockenbach, M. and Symes, W. The Hilbert class library.

http://www.trip.caam.rice.edu/txt/hcldoc/html/index.html.

Heinkenschloss, M. and Vicente, L. N. 1999. An interface between optimization and applica-

tion for the numerical solution of optimal control problems. ACM Transactions on Mathemat-

ical Software 25, 2 (June), 157–190.

Heroux, M. A., Barth, T., Day, D., Hoekstra, R., Lehoucq, R., Long, K., Pawlowski,

R., Tuminaro, R., and Williams, A. Trilinos : object-oriented, high-performance parallel

solver libraries for the solution of large-scale complex multi-physics engineering and scientific

applications.

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

Vector Reduction/Transformation Operators · 25

J. J. Dongarra and J. Du Croz and S. Hammarling and R. J. Hanson. 1988. An extended

set of FORTRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Soft. 14, 1–17.

Lumsdanie, A. and Siek, J. 1998a. ITL : the iterative template library.

http://www.osl.iu.edu/research/itl/.

Lumsdanie, A. and Siek, J. 1998b. The matrix template library.

http://www.lsc.nd.edu/research/mtl/.

Nocedal, J. and Wright, S. 1999. Numerical Optimization. Springer, New York.

Pozo, R. TNT: Template Numerical Toolkit. http://math.nist.gov/tnt.

Pozo, R. 1996. LAPACK++ v 1.1: High Performance Linear Algebra User’s Guide. NIST.

Riesen, R., Brightwell, R., Fisk, L. A., Hudson, T., Otto, J., and Maccabe, A. B. 1999.

Cplant. In Proceedings of the Second Extreme Linux workshop.

Sandia National Labs. 2001. ESI: Equation Solver Interface. http://z.ca.sandia.gove/esi.

Tuminaro, R., Heroux, M., Hutchinson, S., and Shadid, J. 1999. Official Aztec User’s Guide:

Version 2.1. Albuquerque, NM 87185.

Recieved: ???; revised: ???; accepted: ???

ACM Transactions on Mathematical Software, Vol. V, No. N, August 2003.

